
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

http://www.mshah.io

2

3

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

18:00 - 19:00 UTC Sat. Mar 2, 2024

60 minutes + 15 minute Q&A After
Introductory Audience

The Strategy Design Pattern
-- Design Patterns

with Mike Shah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, and Graphics Programming

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

4

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2024/cpponline

5

https://github.com/MikeShah/Talks/tree/main/2024/cpponline

Abstract

The strategy design pattern is a fundamental behavioral design pattern allowing clients to control
the behavior of an object at run-time. The strategy pattern can be seen in action in the C++ STL for
example applying 'policies' to how to execute operations (e.g. std::par or std::seq as one example)
-- thus strategy is often known as the 'policy pattern' as well. The strategy design pattern is
commonly used to choose the algorithm at run-time to best solve a problem -- separating the
algorithmic behavior from the object itself to help make our software more maintainable, extensible,
and flexible. In this talk, we will look at a series of C++ examples (starting from scratch) of using
the strategy pattern to deploy different algorithms at run-time. We will also look at examples of
code in libraries deploying the strategy pattern, and talk about best practices for using the strategy
pattern in Modern C++. The strategy pattern will also be compared to the Template Method
Pattern, which may be an alternative choice. Attendees will leave this talk with the knowledge to go
forward and implement the strategy pattern, as well as how to spot the strategy design pattern in
projects they may already be working on!

The abstract that you read and enticed
you to join me is here!

6

7

The Software Interview

The Software Interview Process (1/3)

8

● Question to audience:
○ How many of you have ever described the software

interview process to a non-software engineering
friend?

● Likely, then you’ve explained how a typical
interview involves:

○ Answering some questions (phone-screen)
○ One or more rounds of coding questions
○ And perhaps other components (take-home test,

presentation, system design exercise, etc.)
● My personal experience has involved a lot of

the whiteboard shown to the right.

The Software Interview Process (2/3)

9

● Question to audience:
○ How many of you have ever described the software

interview process to a non-software engineering
friend?

● Likely, then you’ve explained how a typical
interview involves:

○ Answering some questions (phone-screen)
○ One or more rounds of coding questions
○ And perhaps other components (take-home test,

presentation, system design exercise, etc.)
● My personal experience has involved a lot of

the whiteboard shown to the right.

The Software Interview Process (3/3)

10

● Question to audience:
○ How many of you have ever described the software

interview process to a non-software engineering
friend?

● Likely, then you’ve explained how a typical
interview involves:

○ Answering some questions (phone-screen)
○ One or more rounds of coding questions
○ And perhaps other components (take-home test,

presentation, system design exercise, etc.)
● My personal experience has involved a lot of

the whiteboard shown to the right.

Let’s Look at a Top Interview Question

11
https://leetcode.com/problem-list/top-interview-questions/

https://leetcode.com/problem-list/top-interview-questions/

Sample Problem (1/2)

12

● So here’s a sample
problem

○ Finding duplicate
numbers in a given
vector.

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Sample Problem (2/2)

13

● Question to
audience:

○ Can you think of at
least one way to
solve this?

○ Or maybe two ways?

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

(Aside) Interview Tip (1/2)

14

● Something I was
advised was to make
sure you get at least
one solution during
the interview (if you
cannot be optimal)

● So let’s start with
‘brute force’ strategy

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

(Aside) Interview Tip (2/2)

15

● My second tip, is to
ask probing
questions:

○ e.g. What is the size
of the array

○ Are the integers
4-bytes, or are they 1
byte

○ etc.

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Brute Force Solution (1/4)

16

● Copy vector
● use ‘sort’ on copied vector
● Iterate through copied vector, until the ‘n+1’

element is equal to the nth element.
● Done?

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Brute Force Solution (2/4)

17

● Copy vector
● use ‘sort’ on copied vector
● Iterate through copied vector, until the ‘n+1’

element is equal to the nth element.
● Done?

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Brute Force Solution (3/4)

18

● Copy vector
● use ‘sort’ on copied vector
● Iterate through copied vector, until the ‘n+1’

element is equal to the nth element.
● Done?

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questionsThis suggests we can have a more optimal

strategy, or rather should think carefully
about our algorithms for things like ‘copy’

and ‘sort’

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Brute Force Solution (4/4)

19

● Copy vector
● use ‘sort’ on copied vector
● Iterate through copied vector, until the ‘n+1’

element is equal to the nth element.
● Done?

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questions

https://miro.medium.com/v2/resize:fit:807/1*3KU5GNKBpUbp7gnWLH4muQ.png

This suggests we can have a more optimal
strategy, or rather should think carefully

about our algorithms for things like ‘copy’
and ‘sort’

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://miro.medium.com/v2/resize:fit:807/1*3KU5GNKBpUbp7gnWLH4muQ.png

Sample Problem - More Solutions

20

● Some more possible algorithms:
○ iterate through nums and store each value in an

unordered_set
■ Test for membership before adding, and if

‘.contains’ returns true, you found your
duplicate

○ (Same as above, but with multiset)
■ iterate through nums and store each value in

unordered_multiset, if count > 1, then you
found a duplicate

○ Copy vector, Radix Sort then use adjacent_find to
return iterator to first pair.

○ Floyd's Cycle Detection Algorithm (Tortoise and
Hare) -- Optimal solution [link]

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questions

https://en.wikipedia.org/wiki/Radix_sort
https://en.cppreference.com/w/cpp/algorithm/adjacent_find
https://www.youtube.com/watch?v=PvrxZaH_eZ4
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Constrained Problem, One Optimal Solution

● So for these types of constrained problems,
we likely will strive to find an optimal solution
for our task.

○ Ultimately we can arrive at a linear time complexity
and constant space solution.

■ Note: We could maybe ask more probing
questions (e.g. how many integers, size of
integer, do we run this code frequently, etc.) to
explore perhaps even more optimizations.

● Software development however often comes
with trade-offs -- the solutions are not always
so clean cut

○ Let’s explore more in the next slide!
21

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-inte
rview-questions?envType=featured-list&envId=top-interview-questions

https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions
https://leetcode.com/problems/find-the-duplicate-number/description/?envType=featured-list&envId=top-interview-questions?envType=featured-list&envId=top-interview-questions

Sort
The standard problem of most algorithms textbooks

22

Sorting Algorithms

23

● The truth is, when you learn sorting
algorithms in university (or a
textbook, or after doing enough
leetcode) -- a reason they are
taught is because you have to start
thinking about the trade-offs.

○ They are ‘interesting’ because there are
many strategies to solving the problem,
and we can practice thinking about
working with data in different ways.

https://lamfo-unb.github.io/img/Sorting-algorithms/Complexity.png

https://lamfo-unb.github.io/img/Sorting-algorithms/Complexity.png

Sorting (1/3)

24

● Given:
○ N integers
○ sort them as fast as possible

● Question to Audience:
○ What solutions might you come up

with?

LEGO stop motion sorting algorithm
https://www.youtube.com/watch?v=XN0saL9ujLE

https://www.youtube.com/watch?v=XN0saL9ujLE

Sorting (2/3)

25

● Given:
○ N integers
○ sort them as fast as possible

● Question to Audience:
○ What solutions might you come up

with?
■ Quicksort?
■ Radix sort again? (Or counting

sort)
■ Anyone say insertion sort? LEGO stop motion sorting algorithm

https://www.youtube.com/watch?v=XN0saL9ujLE

https://www.youtube.com/watch?v=XN0saL9ujLE

Sorting (3/3)

26

● Given:
○ N integers
○ sort them as fast as possible

● Question to Audience:
○ What solutions might you come up

with?
■ Quicksort?
■ Radix sort again? (Or counting

sort)
■ Anyone say insertion sort?

○ What probing questions did you come
up with this time?

LEGO stop motion sorting algorithm
https://www.youtube.com/watch?v=XN0saL9ujLE

https://www.youtube.com/watch?v=XN0saL9ujLE

(Aside) -- A Java Perspective (Back to C++ shortly) (1/3)

● If we look at some standard
libraries, we find some important
implementation details!

● Looks like there’s a special
overload for ‘byte’ type that uses
qsort.

○ In fact, that’s the case for char[], short[],
etc. types.

● So a probing questions you might
ask when designing a sort is:

○ What is the data type?

27

https://developer.classpath.org/doc/java/util/Arrays-source.html

https://developer.classpath.org/doc/java/util/Arrays-source.html

(Aside) -- A Java Perspective (Back to C++ shortly) (2/3)

● Now if we dig in a bit further, there’s
something really interesting here.

○ A special branch for small arrays using
not quicksort, but insertion sort

28https://developer.classpath.org/doc/java/util/Arrays-source.html

https://developer.classpath.org/doc/java/util/Arrays-source.html

(Aside) -- A Java Perspective (Back to C++ shortly) (3/3)

● Perhaps better locality empirically
measured?

○ So a probing questions you might ask
when designing a sort is:

■ What is the collection size?

29https://developer.classpath.org/doc/java/util/Arrays-source.html

https://developer.classpath.org/doc/java/util/Arrays-source.html

Back to C++

● In fact -- we can see this same
logic in C++’s ‘sort’ routines.

○ Where if we are sorting less than some
‘_S_threshold’ for the container size

○ Based on that threshold value, we
branch to a different part of code for
perhaps a different algorithm

● Note:
○ These interesting decisions may appear

in other places you may not expect (e.g.
linear search may prove faster than
binary search under various conditions,
despite the difference in Big-Oh
notation)

30

https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
Note: C++ standard library may commonly use ‘introsort’

https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
https://en.wikipedia.org/wiki/Introsort

Changing Algorithmic Behavior With
Branching

if,else if,else (or a switch)

31

Changing Algorithmic Behavior (1/2)

32

● When we execute programs, we
may want to change the behavior
for many reasons:

○ Perhaps the workload has changed
■ (e.g. number of elements to sort)

○ Perhaps some state change in the
application requires adaptation

■ (e.g. In a game the AI changes
their pathfinding algorithm to be
more passive based on user)

○ Perhaps our system has more or less
cpu resources available

○ Perhaps we have entered some error
state

Changing Algorithmic Behavior (2/2)

33

● Of course as we have previously
seen, we can change behavior
based on conditional statements to
branch and change the control
flow.

○ So let’s see how this works at scale
with a task of writing some ‘sort’
function that could be called, and
choose an optimal algorithm.

Sorting Algorithm (1/11)

34

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

What do folks think?
● Could this be a reasonable

sort?
● We choose different sorts

based on empirical data and
cache sizes to inform these
values?

Note: The thresholds here are completely arbitrary

Sorting Algorithm (2/11)

35

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● How maintainable is this
code?
○ Is it reasonable?

Note: The thresholds here are completely arbitrary

Sorting Algorithm (3/11)

36

if (threshold < 16)
insertion_sort(...);

else if (threshold >= 16 && threshold < 64)
tim_sort (...);

else if(threshold >=64 && threshold < 128)
merge_sort(...);

else if(threshold >=128 && threshold < 256)
some_other_sort2(...)

else if (threshold >= 256 && threshold < 512)
some_other_sort3 (...);

else if(threshold >=512 && threshold < 1024)
some_other_sort4(...);

else if(threshold >=1024 && threshold < 2048)
some_other_sort5(...)

else if (threshold >= 2048 && threshold < 4096)
some_other_sort6 (...);

else if(threshold >=4096 && threshold < 8192)
some_other_sort7(...);

else if(threshold >=8192 && threshold < 16384)
some_other_sort8(...)

else{
quick_sort(...)

}

Note: The thresholds here are completely arbitrary

● How maintainable is this
code?
○ Is it reasonable?
○ How about now?

■ The project has
evolved over the
last few years...

■ (And I’m being nice
putting everything
into a one-line
function)

Sorting Algorithm (4/11)

37

if (threshold < 16)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 16 && threshold < 64)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=64 && threshold < 128)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=128 && threshold < 256)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 256 && threshold < 512)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=512 && threshold < 1024)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=1024 && threshold < 2048)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 2048 && threshold < 4096)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=4096 && threshold < 8192)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=8192 && threshold < 16384)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else{
quick_sort(...)

}

● How maintainable is this
code?
○ Is it reasonable?
○ How about now?

■ The project has
evolved over the
last few years...

■ (And I’m being nice
putting everything
into a one-line
function)

○ How about where I am
not so nice and do not
use functions.
■ Maybe I need

some local state, or
find this more
performant?

Sorting Algorithm (5/11)

38

if (threshold < 16)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 16 && threshold < 64)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=64 && threshold < 128)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=128 && threshold < 256)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 256 && threshold < 512)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=512 && threshold < 1024)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=1024 && threshold < 2048)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 2048 && threshold < 4096)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=4096 && threshold < 8192)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=8192 && threshold < 16384)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else{
quick_sort(...)

}

● Let’s prefer whatever
chatGPT tells people to do
these days....and at least
have functions for our
different sorts
○ Note: A good reason for

studying software
design will be to
validate GPT and other
tools.

Sorting Algorithm (6/11)

39

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● So looking back at
the following
example -- another
line of thought:

Sorting Algorithm (7/11)

40

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● So looking back at
the following
example -- another
line of thought:
○ How testable is

this code?
○ One test per

function? or
branch?

○ Performance
tests at every
different
thresholds?

Sorting Algorithm (8/11)

41

if (threshold < 16)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 16 && threshold < 64)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=64 && threshold < 128)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=128 && threshold < 256)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 256 && threshold < 512)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=512 && threshold < 1024)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=1024 && threshold < 2048)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if (threshold >= 2048 && threshold < 4096)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=4096 && threshold < 8192)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else if(threshold >=8192 && threshold < 16384)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n - 1; i++) {
 swapped = false;
 for (j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 swapped = true;
 }
 }
 if (swapped == false)
 break;
 }
}

else{
quick_sort(...)

}

● How testable is our code in
the not-so-nice instance?
○ Probably a bit more

difficult without
abstracting away our
algorithms

○ i.e.
■ If there is local or

global state, this
becomes hard to
test!

Sorting Algorithm (9/11)

42

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● We might be able to get
away with this type of code
in our programs.

● But a few key observations.

Sorting Algorithm (10/11)

43

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● We might be able to get
away with this type of code
in our programs.

● But a few key observations.

We want to be able to change behavior
● In this case at run-time
● But also perhaps at compile-time

Sorting Algorithm (11/11)

44

if (threshold < 16)

insertion_sort(...);

else if (threshold >= 16 && threshold < 64)

tim_sort (...);

else if(threshold >=64 && threshold < 128)

merge_sort(...);

else if ...

....

● We might be able to get
away with this type of code
in our programs.

● But a few key observations.

Observe we have a family of related
algorithms, operating on the same data

Goals for this talk

We want to design code (and discover a design pattern) that helps us:

1. We want to maintain flexibility to choose algorithms:
a. Whether this is at run-time or compile-time

2. Manage complexity of our code (recall the not-so-nice and large code
example)
a. Perhaps a way to organize related algorithms
b. This allows us to make intelligent decisions based on what is in our toolbox

3. It is reasonable that we want to be able to test our algorithms

45

Changing Algorithmic Behavior With
Inheritance

46

Inheritance (1/3)

47

● One mechanism to group related types is by
using ‘inheritance.

○ New classes which are derived from existing
classes (i.e. inherited from) form an ‘is-a’
relationship.

https://learncpp.com/images/CppTutorial/Section11/ShapesInheritance.gif

https://learncpp.com/images/CppTutorial/Section11/ShapesInheritance.gif

Inheritance (2/3)

48

● One mechanism to group related types is by
using ‘inheritance.

○ New classes which are derived from existing
classes (i.e. inherited from) form an ‘is-a’
relationship.

https://learncpp.com/images/CppTutorial/Section11/ShapesInheritance.gif

Shape is the
‘base’ class

Triangle is-a
type of Shape.
It is ‘derived’
from Shape.

https://learncpp.com/images/CppTutorial/Section11/ShapesInheritance.gif

Inheritance (3/3)

49

● So in the context of our sorting problem
○ We could have a common interface (ISorts)

where we derive new types of sorts.
○ What does this give us?

■ (next slide)

ISorts

Insertion Bubble ...

Run-time polymorphism (1/5)

50

● We now have multiple Sorts implementing
from a common interface

● Now we can use run-time polymorphism to
choose the algorithm.

ISorts

Insertion Bubble ...

Run-time polymorphism (2/5)

51

● We now have multiple Sorts implementing
from a common interface

● Now we can use run-time polymorphism to
choose the algorithm.

ISorts

Insertion Bubble ...

Run-time polymorphism (3/5)

52

● Same code as previous slide, but this time
with std::unique_ptr

○ (I’ll try to keep things modern! :))

ISorts

Insertion Bubble ...

Run-time polymorphism (4/5)

53

● Observe that we have encapsulated the
behavior (i.e. the act of ‘sorting’) into an object
as well.

○ Note:
■ If you are anti-OOP, we could have free-functions

and change behaviors using function pointers or
std::function

● A functional approach using a std::variant
holding different function pointers may also
work

● The advantage we get with inheritance here, is
we have some type checking

○ i.e. I cannot assigning ‘sorting_algo’ to anything outside
of the ISorts hierarchy.

● The other advantage with inheritance is we can
more easily enforce the interface with pure
virtual functions.

ISorts

Insertion Bubble ...

Run-time polymorphism (5/5)

54

● Observe we can further use our sorts to
implement a generic_sort function

○ I would say this is quite maintainable, and the
details of implementation are given to each
individual struct of sorting.

■ It becomes nice to also have these building
blocks (i.e. the different sorts) -- in this case
following the Single Responsibility Principle
(SRP)

● So you now have this idea of using
inheritance for a family of similar algorithms

ISorts

Insertion Bubble ...

https://en.wikipedia.org/wiki/Single_responsibility_principle

Managing Complexity

55

Managing Complexity (1/4)

56

● So far we have improved our code to some
degree

○ We can simply re-assign ‘sorting_algo’ based on
some conditional.

● It also becomes ‘easy’ to add new sorting
algorithms

○ Adding a new type to our hierarchy implementing
the ISorts interface is easy

● Something else interesting that we have
done, is isolated our ‘sorting’ its our own
hierarchy

○ (next slide)

ISorts

Insertion Bubble ...

Managing Complexity (2/4)

57

● It’s important that we do not get too carried
away with our inheritance

○ Perhaps we start learning clever tricks for different
platforms for instance to optimize some sorts

■ (maybe you find some new hardware
instructions to cleverly swizzle bits in parallel)

○ Beware, that as soon as we start using inheritance
to solve all of our problems, or our hierarchy gets
too deep -- it becomes difficult to maintain code (or
choose the right algorithm!)

ISorts

Insertion Bubble ...

Insertion
for x86

Insertion
for ARM RISC-V

Managing Complexity (3/4)

58

● It’s important that we do not get too carried
away with our inheritance

○ Perhaps we start learning clever tricks for different
platforms for instance to optimize some sorts

■ (maybe you find some new hardware
instructions to cleverly swizzle bits in parallel)

○ Beware, that as soon as we start using inheritance
to solve all of our problems, or our hierarchy gets
too deep -- it becomes difficult to maintain code (or
choose the right algorithm!)

ISorts

Insertion Bubble ...

Insertion
for x86

Insertion
for ARM RISC-V

Careful! *may* increase complexity --
first ask if hierarchy could remain
1-level deep.

Managing Complexity (4/4)

59

● It’s important that we do not get too carried
away with our inheritance

○ Perhaps we start learning clever tricks for different
platforms for instance to optimize some sorts

■ (maybe you find some new hardware
instructions to cleverly swizzle bits in parallel)

○ Beware, that as soon as we start using inheritance
to solve all of our problems, or our hierarchy gets
too deep -- it becomes difficult to maintain code (or
choose the right algorithm!)

■ We *might* consider a separate hierarchy for
x86,ARM, RISC-V, platforms, or perhaps
moving them up one level.

● This allows a separation of concerns to
some degree if you move to a different
hierarchy or sub-tree

ISorts

Insertion Bubble ...

Insertion
for x86

Insertion
for ARM

Maybe okay -- slightly better

RISC-V

Testability

60

Testing

● With each implementation of our
sort, we can test it relatively easily.

○ Using a test-driven design, we would
setup a test for every derived class and
set our expectation for sorted (or
unsorted) data.

○ Note:
■ Or even better -- you could

parametrize your unit tests with
the different strategy types!

61

Goal Review

62

Goals

63

● So it looks like it’s as simple as that
for writing better code, huh?

○ Move related algorithms into an
inheritance structure

○ And otherwise be careful about
extending the structure too much

● And there is actually a pattern that
largely leverages this idea.

Strategy Design Pattern

64
https://en.wikipedia.org/wiki/Software

https://en.wikipedia.org/wiki/Software

Strategy Design Pattern [wiki] (1/3)

● In computer programming, the strategy pattern (also known as the policy
pattern) is a behavioral software design pattern that enables selecting an
algorithm at runtime. Instead of implementing a single algorithm directly, code
receives run-time instructions as to which in a family of algorithms to use.[1]

65

https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Behavioral_design_pattern
https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Strategy_pattern#cite_note-1

Strategy Design Pattern [wiki] (2/3)

● In computer programming, the strategy pattern (also known as the policy
pattern) is a behavioral software design pattern that enables selecting an
algorithm at runtime. Instead of implementing a single algorithm directly,
code receives run-time instructions as to which in a family of algorithms to
use.[1]

66

https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Behavioral_design_pattern
https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Strategy_pattern#cite_note-1

Strategy Design Pattern [wiki] (3/3)

● In computer programming, the strategy pattern (also known as the policy
pattern) is a behavioral software design pattern that enables selecting an
algorithm at runtime. Instead of implementing a single algorithm directly,
code receives run-time instructions as to which in a family of algorithms
to use.[1]

67

https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Behavioral_design_pattern
https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Strategy_pattern#cite_note-1

When to use Strategy Design Pattern [wiki]

1. When you have a ‘family’ of related algorithms that are interchangeable within the
‘family’

a. e.g. different sorts acting on integer data
b. e.g. different compression algorithms (e.g. lossy vs non-lossy)
c. e.g. exporting dataset to different text formats (e.g. raw, json, xml, yaml, etc.)
d. e.g. different graph traversals

2. When you want to prevent yourself from redeploying software
a. i.e. May be able to select another algorithm at run-time instead of a patch.

3. To potentially make testing easier
a. I’ve found it works well in test-driven development when you have related algorithms.

4. You observe that a class has multiple conditional statements in its operations --
instead of many conditionals, move related conditional branches into their own
strategy class.

68

https://en.wikipedia.org/wiki/Strategy_pattern

Strategy Pattern in the Wild

69

Strategy

Question to Audience: (1/2)

70

● Where is Strategy used in the C++ Standard Library?

Question to Audience: (2/2)

71

● Where is Strategy used in the C++ Standard Library?
○ Execution policies perhaps (https://en.cppreference.com/w/cpp/algorithm/reduce
○ Comparators (https://en.cppreference.com/w/cpp/algorithm/sort_heap)
○ Allocators (https://en.cppreference.com/w/cpp/memory/allocator)
○ More?

■ (Sometimes at run-time, sometime at compile-time!)

https://en.cppreference.com/w/cpp/algorithm/reduce
https://en.cppreference.com/w/cpp/algorithm/sort_heap
https://en.cppreference.com/w/cpp/memory/allocator

(Aside) Policy-based design

● I do want to mention that some of the previous examples use
‘compile-time polymorphism’ (i.e. templates) to select the
‘strategy’.

○ This is often known as ‘policy-based design’, which was popularized by
the book in the top-right corner.

72https://en.wikipedia.org/wiki/Modern_C%2B%2B_Design#Policy-based_design

https://en.wikipedia.org/wiki/Modern_C%2B%2B_Design#Policy-based_design

Question to Audience: Where is Strategy Pattern here?

73

● Thoughts?

Paint Application (GNU Gimp)

74

● Observe the
different brushes
that are highlighted
to the right

○ There are at least
20 + brushes

○ How would we
model the
behaviors for
them?

○ Or the different
tools (spray can,
lines, pencil
drawing, etc.)

Command Line Applications

● Most
command line
applications,
likely have
opportunity for
strategy

○ e.g. ffmpeg
with different
configuration
s/Options

75

https://gist.github.com/tayvano/6e2d456a9897f55025e25035478a3a50

https://gist.github.com/tayvano/6e2d456a9897f55025e25035478a3a50

Falling Sands Game

● These falling sands games with lots
of different ‘particles’ seem like an
excellent candidate for an
IParticle or IElement class.

76

https://www.youtube.com/watch?v=VLZjd_Y1gJ8

https://www.youtube.com/watch?v=VLZjd_Y1gJ8

More Formal Strategy Pattern

77

Strategy Pattern

● Formalizing the strategy pattern just a bit
more -- the strategies are usually part of
some ‘context’

○ Where the ‘context’ is some other object that
uses the pattern.

○ Let’s look at an example.

78

https://en.wikipedia.org/wiki/Strategy_pattern

https://en.wikipedia.org/wiki/Strategy_pattern

(Hypothetical) Strategy Pattern in a Game
(Disclaimer, I did not work on this project)

79

Example of combat strategy (1/5)

● Let’s say we’ve got an ‘Orc’ to the right
here.

○ This ‘Orc’ represents the ‘Context’

80

https://www.kotaku.com.au/wp-content/uploads/2014/10/03/xq72wcg2noxwaroanfiu.gif?quality=75

https://www.kotaku.com.au/wp-content/uploads/2014/10/03/xq72wcg2noxwaroanfiu.gif?quality=75

Example of combat strategy (2/5)

● Let’s say we’ve got an ‘Orc’ to the right
here.

○ This ‘Orc’ represents the ‘Context’
● So now observe that we hold a

‘strategy’ for something that the Orc
will do

○ Note: We delegate to the ‘ICombat’ to do the
‘Execute’ action.

○ Note: You may need to pass data from ‘Orc’
to the selected combat strategy

■ Component systems or other use of
specialized pointers may also easy
how strategy passes data between
‘Orc’

81
https://www.kotaku.com.au/wp-content/uploads/2014/10/03/xq72wcg2noxwaroanfiu.gif?quality=75

https://www.kotaku.com.au/wp-content/uploads/2014/10/03/xq72wcg2noxwaroanfiu.gif?quality=75

Example of combat strategy (3/5)

82

And if you were curious -- here is an
example family of related algorithms -- i.e.
our Strategy

Context

Strategy

Example of combat strategy (4/5)

83

● Note: We could consider always passing in a strategy in the constructor
(construction-injection).

○ We have a setter otherwise to change strategy (setter-injection).
○ All are ‘dependency injection’ techniques for setting our strategy

● Note: Service Locator pattern may also be another way to ‘find’ strategies to
control actions -- see https://gameprogrammingpatterns.com/service-locator.html

Context

Strategy

https://gameprogrammingpatterns.com/service-locator.html

Example of combat strategy (5/5)

84

Context

Strategy

Usage

Summary

85

Pros and Cons

● Pro
○ Provide choice of implementation at run-time

■ Based on workload/data-set that may fluctuate you may
○ Potentially more understandable code

■ As opposed to lots of conditional statements, or otherwise an API with many special
cases

● Con
○ Need to measure performance

■ May have some performance implication passing around objects or a level of indirection
■ Fastest computation likely to ‘just do the thing’ that you need to do

○ May be adding inheritance hierarchies that are not needed

86

Use the Strategy Pattern When...

● You find yourself working with ‘families of algorithms’
● You have lots of ‘if-else’ or ‘switch’ statements

○ Simplifying your code with this abstraction may also allow you to create/explore/change your
program more freely

● You need a way to change run-time behavior
● You want more testable code

○ (Whether that encourages testing in general, or makes it easier to write tests)

87

88

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

18:00 - 19:00 UTC Sat. Mar 2, 2024

60 minutes + 15 minute Q&A After
Introductory Audience

The Strategy Design Pattern
-- Design Patterns

with Mike Shah

Thank you 2024!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

89

Extras and Notes

90

91

